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Abstract

In the world of Track and Field, ”Championship Style Racing” has
been an adopted term that many use. A ”Championship Style Race” is
defined when the field of runners start slow and with a lap or two left,
the runners start to pick up pace and sprint to the finish. This adopted
strategy has been used more and more, especially when winning is the
goal of the race. This paper will go over how Game Theory can be used
to determine the optimal strategy for a runner in this type of race. We
find a payoff function which uses one of the biggest indicators of a runners
ability, V O2max.
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1 Introduction and Background

1.1 Championship Track Meets

Competitive championship races in relatively recent years has become
more strategic. Rather than getting from start to finish as fast as possi-
ble, the focus has shift to being at the finish first, no matter how long it
takes to get from start to finish. This tactic is known as a ”sit and kick”
strategy[1].

A championship meet in track is one which multiple individuals, teams,
or countries compete against each other for the top positions, typically
first, second, and third (gold, silver, and bronze respectively). Examples
of championship meets in track would include the Olympics, which occur
every four years in the month of August, World Championships, which
occur the years before and after each Olympics, and individual country
or continental championships, such as United States of American Track
and Field (USATF) Championships and European Championships.

During these championship events, time is typically irrelevant (with a
few occasions during country and continental championships where some
athletes may still need Olympic standard times, but these are far and few
between). Moreover, as the distances increase, time becomes less rele-
vant, which causes individuals who race in distance events (1,500 meters
to 10,000 meters) to focus on positions within the field1 and leg speed,
rather than time. Athletes employ different strategies that will increase
their chances of a desirable outcome.

The ability to optimally position oneself and choose a best strategy, rel-
ative to the rest of the field, has a direct impact on the outcome of the
race. Athletes in a championship race often form one pack that runs to-
gether in the beginning and middle laps of a race, similar to a peloton in
competitive cycling, this is known as the ”sit”. Towards the end of the
race, the runners will position themselves to ’strike’ and break away from
the pack to get to the finish line first, this is known as the ”kick”. To
fully understand the importance of the final lap(s) of a race, during the
2008 Beijing Olympics, all races, including preliminary heats and finals,
from 1,500 meters to 10,000 meters, were decided within the last lap[9].

Professional distance runners train particularly in positioning and leg
speed so that they can employ dominate strategies during these cham-
pionship races. The question becomes what are the dominate strategies
and at what point in the race should runners opt to perform a dominate
strategy.

1When speaking of the all the runners in one event (i.e. the entire group) this is referred
as the ”field”.
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1.2 Initial Model

Analysis of championship races will be done through the lens of Game
Theory, the initial model will be trivial, but nonetheless, necessary to
understanding the Game Theory notation and to form a foundation for
the main ideas of championship style racing. Once the initial model is
formulated, the complexity will increase as nature and assumptions are
introduced. After nature is introduced, assumptions will be made and a
payoff function will be created.

1.2.A Players

In any game, there are N players. Let any given player be denoted as
Player i, where i = 1, 2, ..., N .

For the initial model, consider two players (or runners). Let P1 be Player
1 and P2 be Player 2. Both players have the same set of strategies that
can be used.

1.2.B Strategies

Let Si denote the strategy set for Player i. For each strategy set Si, there
is a set of feasible strategies that can be used by Player i, let this be repre-
sented by {s′i, s′′i , s′′′i , ...}, where each s represents a single feasible strategy.

For the initial model, each strategy set contains two feasible strategies:
Lead (L) and Not Lead (NL). Let s′i be Lead, and s′′i be Not Lead. There-
fore, Player 1 strategy set is:

S1 = {s′1, s′′1}
= {Leads, Not Leads}

Likewise, Player 2 strategy set is:

S2 = {s′2, s′′2}
= {Leads, Not Leads}

When each player chooses a feasible strategy to use, the specific combina-
tion of strategies chosen by each player is known as the strategy profile.
Strategy profiles are denoted sP1Action,P2Action. For example, if Player 1
chooses to Lead (s′1) and Player 2 chooses to Not Lead (s′′2 ), then this
specific strategy profile is denoted as:

sL,NL = {s′1, s′′2}

For the initial model, we will define all possible strategy profiles for Player
1 and Player 2:

Player 1 Leads and Player 2 Leads : sL,L = {s′1, s′2}
Player 1 Leads and Player 2 Not Leads : sL,NL = {s′1, s′′2}
Player 1 Not Leads and Player 2 Leads : sNL,L = {s′′1 , s′2}
Player 1 Not Leads and Player 2 Not Leads : sNL,NL = {s′′1 , s′′2}
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1.2.C Payoffs

Each strategy profile will have certain outcomes for each player, these are
known as payoffs. The payoffs for each player can be represented by a
utility function, ui(), where u takes on a strategy profile.

For the initial model, these numbers are arbitrarily assigned, however,
they are meant to represent the real world scenarios of a championship
race. For example, the payoffs for the strategy profile of a player who
chooses to Lead and the other Not Lead is (1,2), respectively, which makes
sense since the one who leads is exerting more force than the one who is
not leading.

In that example, the strategy profile represents the real world scenario
of one player leading while the other sits behind them. The player who
is leading will have a small benefit for controlling the pace and a small
benefit for ”being in first”, however, the player who leads is at a disad-
vantage because it is breaking the wind for the player behind it and also
has to mentally work harder[6]. The player who Remains Same will be
sitting behind the leader, and will gain the benefit of slipstreaming2 as
well as benefit from not having to mentally work as hard as the leader.
Both players gain positive benefits for their actions, however, the one who
is following behind the leader (in our model, the Not Lead action) will
gain a bigger benefit than the player who leads.

For the initial model, we will define the payoffs from the utility function
for Player 1 and Player 2 on all of the strategy profiles3:

u(sL,L) = (1, 1)

u(sL,NL) = (1, 2)

u(sNL,L) = (2, 1)

u(sNL,NL) = (0, 0)

2Slipstream is the region behind a runner which a wake of air occurs and causes reduced
pressure and air resistance. If Runner B is behind Runner A, then Runner B will be in the
Runner A’s slipstream, which will require Runner B to use less energy to move at the same
speed of Runner A.

3The first value in the payoff coordinates belongs to Player One and the second value
belongs to Player Two
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1.3 Normal-Form Model

A Normal-Form Model can be used in a static and simultaneous moved
game, meaning player make a move at the same time. This is displayed
as a matrix where the rows represent one of the player’s strategies and
the columns represent another player’s strategies. If more than two play-
ers are involved, then multiple matrices are created to represent addition
players’ strategies. When looking at the initial model as a static, simul-
taneous move game, the following matrix can be used to represent the
payoffs of each player:

Player 2

Lead Not Lead

Player 1
Lead (1, 1) (1, 2)

Not Lead (2, 1) (0, 0)

Table 1: Payoff Matrix of the initial model (Normal-Form)

1.3.A Nash Equilibrium

Before analyzing a model (whether it is Normal-Form or Extensive-Form),
it is important that common knowledge of the payoffs and rationality4 of
players are assumed. Common knowledge, a rather important concept in
game theory, means that the information is known by all players, and all
players know that all players know that information, and all player know
that all player know that all players know that information, and so on.

When the payoffs of the initial model are assumed to be common knowl-
edge, it means that: Player One knows all payoffs (its own and Player
Two’s payoffs) and Player Two knows all payoffs (its own and Player
One’s payoffs). It also means that, Player One knows that Player Two
knows all payoffs and Player Two knows that Player One knows all pay-
offs. Even further, Player One knows that Player Two knows that Player
One knows all the payoffs and Player Two knows that Player One knows
that Player Two knows all the payoffs, and so on.

To evaluate the game in Normal-Form, Nash Equilibrium can be applied.
A Nash Equilibrium is a strategy profile where each player’s utility payoff
is at least tied for its best response[7].Furthermore, John Nash proved,
with the use of Kakutani’s Theorem5, that an equilibrium exists for any
two player game[5].

For the initial model, a Nash Equilibrium can be found by underlining
the best response (highest payoff) for each player given a specific strategy

4Rationality meaning players act in their best interest
5Shizuo Kakutani, PhD Osaka Univeristy. Fundamental theorem in Nash?s explanation of

Nash Equilibrium
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by the other player. For example, if Player One chooses to Lead, then
Player Two’s best response is to Not Lead, and if Player Two chooses to
Not Lead, then Player One’s best response (at least tied for best response)
is to Lead. The following matrix represents all possible best responses for
each player given the other player moves:

Player 2

Lead Not Lead

Player 1
Lead (1, 1) (1, 2)

Not Lead (2, 1) (0, 0)

Table 2: Normal-Form with best responses underlined for each player

As it is seen in the matrix above, the Nash Equilibria for the initial model
are:

NE = {(Lead, Not Lead), (Not Lead, Lead)}
= {(1, 2), (2, 1)}

1.4 Extensive-Form Model

An Extensive-Form can be used to represent a game theory model that
is dynamic and sequential, meaning the agents take turns making moves
and each move is a response to the previous. Extensive-Form is similar
to a tree in graph theory. When using the Extensive-Form to represent a
game, the nodes of the graph indicate a player. The edges of the graph in-
dicate a specific strategy from the strategy set of the node (player) which
the edge extends from. As one makes its way through the graph, each
node it comes by represents a new round of the game which a decision
ought to be made. Once one gets to the final node of the graph, the pay-
offs that each player will receive are shown. (these payoffs are identical
to the payoffs from the Normal-Form game). A specific route, from the
first node to a terminal node, is known as a path and represents a distinct
strategy profile.

When showing a game with the Extensive-Form, the resulting graph is
called the Game Tree[2]. For our initial model, the Extensive-Form can
be represented by the following tree:
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Player One

Player Two

(1, 1)

Lead

(1, 2)

Not Lead

Lead

Player Two

(2, 1)

Lead

(0, 0)

Not Lead

Not Lead

Figure 1: Game Tree of the initial model (Extensive-Form)

To fully understand the tree, lets walk through an example. Player One
is the first node, which means that Player One has to choose a strategy:
Lead or Not Lead. In this case, let’s say Player One chooses Lead, s′1.
By moving through the tree, we land on a new node, Player Two. At
this point Player Two has to choose a strategy: Lead or Not Lead. The
logical decision for Player Two is to choose Not Lead, s′′2 , since it leads to
the greatest payoff for Player Two. Once again we move through the tree
and stop at a terminal node, meaning the game is over and Player One
receives a payoff of 1 and Player Two receives a payoff of 2. The path
that was chosen represents the strategy profile {s′1, s′′2}.

Looking at the initial model through the Extensive-Form raises perhaps
one concern - Player One has to make the first move. In the situation of
a track race, we do not know which player will make the first move. It
is too complicated to let the player who makes the first move be Player
One since the terminal node payoffs will be changed depending on which
player moves first.

To account for the unknown behavior of the players, we can introduce
a new agent to the Extensive-Form tree, Nature. This Nature agent will
be the starting point of the game and will give equal probability of either
Player One or Player Two making the first move (in this case the proba-
bility of either player making the first move is 50, 50).

With Nature involved, the resulting Game Tree will look similar to the
following graph:
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Nature

Player One

Player Two

(1, 1)

Lead

(1, 2)

Not Lead

Lead

.5

Player Two

Player One

(1, 1)

Lead

(2, 1)

Not Lead

Lead

.5

Figure 2: Game Tree of the initial model with Nature involved

1.4.A Backward Induction Equilibrium

To analyze a model in the Extensive-Form, once again common knowledge
of the payoffs and rationality of players are assumed. To begin the eval-
uation, we will use a strategy known as Backward Induction. Backward
Induction can be thought of as a process from starting at the end of the
game tree and working backwards.

In the first game tree (Figure 1), which is a single round game, the de-
sirable outcome for Player One is (2, 1). If Player One chooses Not Lead,
then Player Two will have potential outcomes, either 1 or 0. In this
case, Player Two would choose the strategy that provides a payoff of 1 (if
Player Two is rational). Since the payoff of 1 for Player Two corresponds
to Player One receiving a payoff of 2, the strategy profile equilibrium via
Backward Induction is for Player One to choose Not Lead and Player Two
to choose to Lead.

BI = {(Not Lead,Lead)} = {(2, 1)}

Notice that the equilibrium via Backward Induction is not the exact same
as the Nash Equilibria (it only contains one of the Nash Equilibria). This
is completely acceptable in Game Theory. Backward Induction will not
always be the same as Nash, and it can even yield equilibria that are not
Nash equilibria.
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2 Method

Now that a foundation of Game Theory modeling has been established,
adding parameters will make the model realistic. However, adding param-
eters will also complicate the model. The objective is to create a realistic
Payoff Function that represents the payoffs of each player depending on
the strategy profile.

When developing a Payoff Function of a Game Theory model, a sensible
payoff has to be determined. Since the purpose of Championship Style
Racing is to preserve as much energy as possible and then use whatever
energy you have left in the last lap so that you are in the lead by the
finish[8], therefore, a sensible payoff function would represent the remain-
ing energy a runner has.

To create a reasonable payoff function that uses the amount of energy
used by a player, it is necessary to know what contributes to the amount
of energy a runner uses while running. There are three main components
that determines the amount of energy used while running: running form,
running economy, and V O2max[4].

The most realistic approach would be to create a payoff function that in-
corporates all of these components, however, this would complicate things
beyond the scope of this paper. To ease the analysis of championship races
on paper, a few assumptions have to be made: all players have the same
running form and running economy. This allows focus on the V O2max,
which is the ”measurement of the maximum amount of oxygen that an
individual can utilize during maximal exercise”[3].

2.1 Maximum Energy Available

V O2max is measured in milliliters of oxygen utilized per kilogram of weight
per min of exercise (mL/kg/min). A study done by the Department
of Exercise Science at Syracuse University stated that for every 1mL of
V O2 used is 20.1 joules of energy for every kg of weight[6]. Using Jack
Daniel’s VDot chart6 it is possible to determine the total amount of energy
an individual can use during a certain race given their V O2max. The
amount of maximum energy an individual can use is given by the following
equation:

Γ = (Vi ∗ wi ∗ 20.1) ∗ t (1)

where,

Vi represents Player i ’s V O2max,

wi represents Player i ’s weight,

ti represents Player i ’s time racing,

and 20.1 is an energy constant for running

6The VDot chart shows the predicted times for different race distances (if a person is racing
”all out”) at specific V O2max’s; see appendix for charts
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To further understand the above formula, there is a Player i who is
running a 1, 500 meter race. If Player i’s V O2max is 70 and weight is
65kg, then the amount of energy Player i uses is 91, 455 Joules

min
. Since

Player i’s V O2max is 70, it will take Player i 4 minutes to run 1, 500
meters, meaning the maximum amount of energy Player i can use during
a 1, 500 meter race is 365, 820 J :

Pi max energy = Γi = (Vi ∗ wi ∗ 20.1) ∗ t

= (70
mL

kg/min
∗ 65kg ∗ 20.1) ∗ t

= (91, 455
J

min
) ∗ 4min

= 365, 820J

2.2 Payoff Function

Knowing a Player’s maximum amount of energy available, the payoff func-
tion can be formulated. The payoff function will use the maximum amount
of energy available to a Player and subtract the amount of energy used
per round. The Player with the most energy left with 1 round (lap) to
go is declared to be the winner. The payoff function is represented by the
following equation:

Γi − γ1,i − γ2,i − ...− γk−1,i, (2)

where,

Γi is Player i ’s max. amount of energy,

γ1,i is the energy used in round 1 for Player i ,

γ2,i is the energy used in round 2 for Player i ,

γk−1,i is the energy used in second to last round for Player i ,

The amount of energy used in any distinct round by Player i is defined
by:

γi =

{
[(vi ∗ wi ∗ 20.1) ∗ t] 1

N
if Pi chooses Lead

0.925[(vi ∗ wi ∗ 20.1) ∗ t]N−1
N

if Pi chooses Not Lead
(3)

where,

vi is the V O2 used by Pi for a distinct round,

wi is the weight of Pi,

t is the time the distinct round took, and

N is the number of players in the race

The formulation of a piecewise function for the amount of energy used
for any given round is reasonable since the amount of energy used will be
determined by the strategy chosen by the player.
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The amount of energy a player uses during any given round is deter-
mined by their oxygen uptake (V O2) how much they weigh, the time (in
minutes) they are running while at that specific oxygen uptake, and the
energy constant for running, 20.1. However, when a player is not leading,
they used 7.5% less energy since they have less air resistance[8] - this is
where one of the differences come from between the strategies Lead and
Not Lead. When a player does not lead, the energy used is multiplied by
.925.

Also, when a player leads, the formula is multiplied by 1
N

since majority
of races are led by one player, meaning the probability that any given
player has to lead is 1 out of the number of players in the race. When
a player is not leading, the formula is multiplied by N−1

N
since only one

player leads, the probability of not leading is one less than the number of
players in the race divided by the number of player in the race.
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3 Analysis

Now that the payoff function has been defined, analysis can be done to
determine what maximizes the payoff function.

Based on the piecewise function, it is clear that for a certain number
of players in the game, N :

0.925[(vi ∗ wi ∗ 20.1) ∗ t]N − 1

N
> [(vi ∗ wi ∗ 20.1) ∗ t] 1

N

The first objective is to figure out what N satisfies the above inequality.
Solving for N, we get:

0.925[(vi ∗ wi ∗ 20.1) ∗ t]N − 1

N
> [(vi ∗ wi ∗ 20.1) ∗ t] 1

N
N − 1

N
> 1.081 ∗ 1

N

N − 1 > 1.081

N > 2.081

Meaning, as long as the game consists of more than 2 players, then the
optimal strategy to save energy is to Not Lead.

13



4 Discussion

The purpose of this article was to provide a basic, but necessary, founda-
tion for creating a Game Theory Model, as well as provide a preliminary
framework for future research. However, this article did have some limi-
tations.

4.1 Limitations

One of the limitation is the assumptions of running form and running
economy being fixed for all players. This would not be quite a realistic
assumption since a track race will contain runners with varying form and
economy. Without this assumption, the payoff function would have be-
come too complex to evaluate on paper.

Another limitation is the use of Extensive-Form. It makes sense that
Extensive-Form was used to describe the game, sense a track race is a
sequential event (the runners react to different moves, they do not make
moves simultaneously). However, Extensive-Form limits the number of
”rounds.” However, in a true track race, the runners can make moves at
any point, not just at the beginning of each round (i.e. lap).

The final limitation is the lack of real-world data. Data is collect on
runners at the beginning of each lap, however, this data does not tell
whether a move was made and if a move was made, when it occurred.
Also, there is no individual data on each runner’s V O2max. Without real-
world data, it is hard to validate a theoretical model.

Do deal with these limitations, future research can be conducted with
simulations. Simulations will eliminate the assumption of same running
form and economy by allowing different inputs of these components for
different agents in the game. Simulation will also eliminate the Extensive-
Form by creating a continuous game rather than discrete, which will lead
to a more realistic result. Lastly, Simulation will eliminate the need for
real-world data since a multitude of simulations can be ran.
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5 Conclusion

Modeling a championship race using a Game Theory framework proved to
be complex. Looking at the initial model in Normal-Form and Extensive-
Form, trivial solutions occurred ? the best strategy profile, based on Nash
Equilibria and Backward Induction, is for Player One to Not Lead and
Player Two to Lead.

With the assumptions that each runner has similar form and running
economies, a payoff function was created that involved each runner’s
V 02max and air resistance. It was found to maximize the payoff func-
tion, a runner prefers to Not Lead and stay behind the leader in a race.
This will save energy (˜7.5%) due to the lack of air resistance, meaning
the runner who does Not Lead will have more energy to finish first during
the last round.

Also, with the introduction of Nature, which randomly assigned a runner
to lead first, it was found that a runner who leads first is at a disadvan-
tage. It was also found that with a large pool of runners racing, the better
chance of a runner not having to lead the race, which will save the runner
energy from being less likely to lead, which will lead to a greater chance
of finishing first (compared to having to lead in a big field verse having to
lead in a small field).

To better evaluate championship races in track by simulations can be
used. This will allow for a broad evaluation with little assumptions made
about the runners. Also, simulations will help with determining the opti-
mal strategies, or optimal times to take the lead in a race to have a better
chance at finishing first.
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Appendices

A VDOT Charts

Figure 3: VDOT Chart for V O2max’s from 30 to 60
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Figure 4: VDOT Chart for V O2max’s from 61 to 85
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